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1. Introduction

Some time ago, Horava and Witten [1, 2] proposed that the low energy limit of strongly

coupled heterotic string theory could be formulated as 11-dimensional supergravity on a

manifold with boundary. This opened up the possibility that matter might exist on a

surface embedded in the 11-dimensional spacetime with supergravity taking care of the

gravitational interactions. Although the theory has received less attention recently than

type IIB superstring theory, it nevertheless remains a possible starting point for particle

phenomenology [3, 4].

The original formulation of Horava and Witten contained some serious problems which

limited the range of validy of the 11-dimensional limit. These problems where solved

recently using a new formulation of supergravity on manifolds with boundary [5 – 7]. The

most serious problem affecting the model was that it was expressed as a series in the factor

κ11
2/3 multiplying the matter action, which worked well at leading and next-to-leading

order but became ill-defined thereafter. This problem was resolved by a simple modification

to the boundary conditions resulting in a low energy theory which is supersymmetric to all

orders in κ11
2/3.

The aim of the present paper is to add curvature-squared terms to the new formulation

of supergravity on manifolds with boundary. These terms are necessary for the cancellation

of gravitational anomalies [2, 8, 7], and they are important for reductions to lower dimen-

sions with broken chiral symmetry [3, 4, 9 – 12]. Higher order terms should therefore be

present if the theory is truly the low energy limit of the strongly coupled heterotic string.

Curvature-squared terms have been included in the boundary action, for example by Lukas

et al. [9], but they have never been shown to be part of a supersymmetric theory before.

The methodology adopted will be to construct the boundary conditions and the ac-

tion of the theory order by order in derivatives, imposing the local symmetries at each
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stage. Anomaly cancellation will be brought about by the Green-Schwarz mechanism [13],

modified to accomodate boundaries [2, 7]. The results contain all terms with up to five

derivatives and two fermi fields. A remarkable feature is that the action to this order is

uniquely determined, with only one free parameter κ11. It seems likely that this determin-

ism in the theory will occur at higher orders in the curvatures, leaving no room for free

parameters apart from the gravitational coupling.

Before proceding, it will be helpfull to repeat some of the ingredients of the improved

version of low-energy heterotic M -theory described in ref. [6]. The theory is formulated

on a manifold M with a boundary consisting of two disconnected components ∂M1 and

∂M2 with identical topology. The eleven-dimensional part of the action is the conventional

action for supergravity, with metric gIJ , gravitino ψI and antisymmetric tensor CIJK [14].

The boundary terms which make the supergravity action supersymmetric are [15],

S0 =
1

κ2
11

∫

∂M

(

K̂ ∓ 1

4
ψ̄AΓAΓBψB

)

dv, (1.1)

where K is the extrinsic curvature of the boundary and A,B, . . . denote tangential indices.

Hats denote the standardised subtraction of gravitino terms to make a supercovariant

expression. We shall take the upper sign on the boundary component ∂M1 and the lower

sign on the boundary component ∂M2.

There are additional boundary terms with Yang-Mills multiplets, scaled by a

parameter ǫ,

SYM = − ǫ

κ2
11

∫

∂M
dv

(

1

4
trF 2 +

1

2
trχ̄ΓADA(Ω̂∗∗)χ+

1

4
ψ̄AΓBCΓAtrF ∗

BCχ

)

, (1.2)

where F ∗ = (F + F̂ )/2 and the connection Ω∗∗ = (Ω + Ω∗)/2. The original formulation

of Horava and Witten contained an extra ‘χχχψ’ term, but it is not present in the new

version. The formulation given in ref. [7] was only valid to order R, and our aim here is to

extend the theory to include R2 terms and beyond.

The specification of the theory is completed by boundary conditions. For the tangential

anti-symmetric tensor components,

CABC = ∓
√

2

12
ǫ

(

ωYABC ∓ ωχABC
)

. (1.3)

where ωY is the Yang-Mills Chern-Simons form and ωχ is a bilinear gaugino term. These

boundary conditions replace the modified Bianchi identity in the old formulation. A sug-

gestion along these lines was made in the original paper of Horava and Witten [2]. For

the gravitino,

ΓAB (P± + ǫΓP∓)ψA = ǫJY
A, (1.4)

where P± are chiral projectors using the outward-going normals, Γ is a bilinear gaugino

term and JY is the Yang-Mills supercurrent. The resulting theory is supersymmetric to all

orders in the parameter ǫ, but the gauge anomalies only vanish if the gauge groups on the

boundaries are both E8 and

ǫ =
1

4π

(κ11

4π

)2/3
. (1.5)
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Further details of the anomaly cancellation, and additional Green-Schwarz terms, can be

found in ref. [7].

The gravitational anomaly vanishes if we introduce an extra term into eq. (1.3) in-

volving the Chern-Simons term ωL for local Lorentz transformations. The calculations

which follow can be seen as an attempt to find the supersymmetric completion of the new

boundary conditions with the local Lorentz term. These boundary conditions are sufficient

to determine the boundary action. Section 2 lays down the general strategy and sets up

the derivative expansion scheme. Section 3 gives results up to fifth order in derivatives for

the boundary terms in the action and for the boundary conditions. The last part of section

3 considers anomaly cancellation and discusses the generalisation of the earlier results to

all orders in the curvature. The results are collected together in the conclusion.

The conventions used follow Weinberg [16].The metric signature is − + . . .+. The

gamma matrices satisfy {ΓI ,ΓJ} = 2gIJ and ΓI...K = Γ[I . . .ΓK]. Eleven dimensional

vector indices are denoted by I, J, . . .. The coordinate indices on the boundary are denoted

by A,B, . . ., tetrad ones by Â, B̂, . . . and the (outward unit) normal direction by N .

2. Supersymmetry transformations

Construction of the higher order terms is based on the ingenious method introduced by

Bergshoeff et al. [18, 17]. We combine the spin connection and gravitino derivatives into a

pair {ω−
ABC , ψAB} which is almost a Yang-Mills multiplet. Adding the higher order terms

is similar to adding Yang-Mills multiplets, which we know how to do. Unfortunately, in 11

dimensions, normal components and flux terms complicate the simple picture and enhance

the technical difficulties.

We shall start from the transformation rules for the graviton multiplet and devise

a consistent derivative expansion scheme. Then we shall construct quantities which are

optimised to make the best possible Yang-Mills multiplet. In the next section we construct

the boundary terms in the action to fifth order in derivatives. The following section .

extends the boundary conditions to fifth order in derivatives and confirms that they are

supersymmetric

We shall use the parameter α to keep track of the order of terms in our derivative

expansion. The order of terms should be preserved by the sypersymmetry transformations,

which are

δeÎ J =
1

2
η̄ΓÎψJ (2.1)

δψI = DI(Ω̂)η +

√
2

288

(

ΓI
JKLM − 8δI

JΓKLM
)

ηĜJKLM (2.2)

δCIJK = −
√

2

8
η̄Γ[IJψK] (2.3)

where G is the abelian flux tensor. We also require that CABC ∼ ωLABC on the boundary.
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The ordering we shall use is,

RABCD = O(α2) ψA = O(α) (2.4)

GNABC = O(α2) D[AψB] = O(α2) (2.5)

GABCD = O(α4) D[NψB] = O(α3) (2.6)

Additional tangential derivatives increase the order by one. This expansion scheme is

consistent with the Calabi-Yau reductions found in the literature [9], where the small

parameter is related to the curvature of the Calabi-Yau space.

The first quantity we construct is the gravitino curvature ψAB . We start from the

supersymmetry transformation of the tangential gravitino from eq. (2.2) to two-fermi order,

which can be written,

δψA = DAη = (DA + AA)η (2.7)

where DA uses the Levi-Civita connection and AA contains a combination of abelian-flux

terms and gamma matrices. The analogue of the curvature is defined by

[DA,DB ] = RAB . (2.8)

The quantity RAB is a tensor which takes values in the gamma-matrix algebra,

RAB = −1

4
RABIJΓ

IJ + 2D[AAB] − [AA,AB]. (2.9)

The new derivative is used to define the gravitino curvature ψAB ,

ψNA = 2D[NψA] (2.10)

ψAB = 2D[AψB] − Γ[AψB]N . (2.11)

It may help understand this construction to recall that, in the reduction of 11-dimensional

supergravity, the 10-dimensional gravitino is ψA + ΓAψN/2. If the normal derivatives

vanish, then ψAB is the usual 10-dimensional gravitino curvature. The supersymmetry

transformation of the gravitino curvature is

δψAB = RABη − 2Γ[ARB]Nη. (2.12)

Note that RNABC is very small due to Gauss-Codacci relations, of order α5, and this

variation basically depends on RABCD plus abelian-flux terms.

The supersymmetry transformations are only required on the boundary, where it proves

convenient to decompose the flux-gamma-matrix combinations into tangential and normal

components,

X =

√
2

72
GNABCΓABC , XA =

√
2

8
GNABCΓBC , (2.13)

Y =

√
2

288
GABCDΓABCD, YA =

√
2

24
GABCDΓBCD, YAB =

√
2

8
GABCDΓCD. (2.14)
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For example,

AA = ΓA(ΓNX + Y ) − ΓNXA − YA, (2.15)

AN = −2X + ΓNY. (2.16)

The supersymmetry parameter is chiral on the boundaries, with ΓNη = ∓η depending on

which boundary we choose. The results below take ΓNη = −η.
Next, we turn to the Levi-Civita spin connection ωAB̂Ĉ . This does not transform like

a Yang-Mills gauge field, but we can adapt an idea from 10 dimensions [17] and try the

addition of a G-flux term,

ω−

AB̂Ĉ
= ωAB̂Ĉ +

1√
2
GNAB̂Ĉ . (2.17)

The transformation rules for the pair ω̂−

AB̂Ĉ
and ψAB become

δω̂−

AB̂Ĉ
= −1

2
ηΓAψB̂Ĉ + yAB̂Ĉ (2.18)

δψAB = −1

4
R−

CDABΓCDη + yABη, (2.19)

where the minus superscript on the curvature indicates use of the ω− connection. The

leading terms are O(α2), whereas yAB̂Ĉ and yAB are both O(α3). These correction terms

are given by

yAB̂Ĉ = −1

4
ηΓB̂ĈψNA − 1

2
η{ΓB̂Ĉ ,X}ψA +

1

2
ηeAB̂ψNĈ +O(α5), (2.20)

yAB = ΓABY
′ − Γ[AY

′
B] − Y ′

AB +O(α5). (2.21)

where Y ′ is shorthand notation for DNY . Note that R−
ABCD 6= R−

CDAB now that the

connection is no longer a metric connection.

In order to complete the set of transformation rules, we also need

δψNA = yNAη, (2.22)

where

yNA = 2DAX + ΓAY
′ − Y ′

A +O(α5). (2.23)

We have not made any modification to the basic supersymmetry rules, and none appears

to be necessary to the order at which we are working. All of the approximations used in

this section can be replaced by exact expressions, but the approximate ones are sufficient

for the subsequent sections.

3. Higher order terms

3.1 Boundary terms in the action

At leading order in α, the pair {ω̂−
ABC , ψAB} form a Yang-Mills multiplet and we can add

this to the boundary conditions and the action in the same way as the existing Yang-Mills
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multiplet described in the introduction. We use a new coupling ǫL for the new multiplet,

and anomaly cancellation fixes ǫL [7],

ǫL = −1

2
ǫ. (3.1)

The boundary conditions can be read off eqs. (1.3) and (1.4),

CABC = −
√

2

12
ǫ
(

ωYABC + ωχABC
)

+

√
2

24
ǫ
(

ωLABC + ωψABC

)

, (3.2)

ΓABP+ψB = ǫJY
A − 1

2
ǫJL

A, (3.3)

K̂AB − 1

2
gABK̂ = ǫT YAB − 1

2
ǫTLAB, (3.4)

where T YAB is the Yang-Mills stress tensor and

ωψABC =
1

4
ψDEΓABCψ

DE , (3.5)

JL
A =

1

4
ΓBCΓARBCDEψ

DE , (3.6)

TLAB = R−
ACDER

−
B
CDE − 1

4
gABR

−
CDEFR

−CDEF + ψ-terms. (3.7)

The Yang-Mills results imply that eq. (3.4) is a necessary and sufficient condition for

supersymmetry of the boundary conditions (3.2) and (3.3).

There are also new curvature-squared terms in the boundary action, which we obtain

from the Yang-Mills terms in eq. (1.2),

SRR =
ǫ

2κ2
11

∫

∂M
dv

(

1

4
R−

ABCDR
−ABCD (3.8)

+
1

2
ψ̄BCΓADA(ω)ψBC +

1

4
ψ̄AΓBCΓARBCDEψ

DE

)

.

The supersymmetry of the full action with the new boundary terms follows from the gravity-

Yang-Mills calculation given previously [6]. The modified curvature R−
ABCD has been used

for consistency between the derivative orders of the bosonic and fermionic terms. Note

that terms involving the square of the Ricci tensor only appear at order α8 in the ordering

scheme being used.

Another important property of the full action is that it should be stationary under

variations of the fields about solutions to the field equations with the specified boundary

conditions. Variations of the new boundary term with the tetrad can be decomposed into

metric variations and local Lorenz rotations (see appendix B in [6]),

δSRR =
ǫ

2κ2
11

∫

∂M
dv

{

δω−

BĈD̂

(

DAR
ABĈD̂ − 1

2
DE(ψAΓBEΓAψĈD̂)

)

− 1

2
δgABT

LAB

}

.

(3.9)

The surface stress-tensor term is O(α4) in the derivative expansion and combines with the

variation of the supergravity action SSG to produce the boundary condition eq. (3.4). The
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metric variation provides a good way to determine the fermion terms in the stress-tensor.1

The Bianchi identity and the gravitino field equation together imply that the variation

of the surface connection gives no contribution to δSRR at leading order in the derivative

expansion.

Variations of the action with the gravitino can be split up in the following way,

δSRR =
ǫ

2κ2
11

∫

∂M
dv

{

δψ
BC

(

ΓADAψBC +
1

4
RDEBCΓAΓDEψA

)

+ δψAJ
A
L

}

. (3.10)

The supercurrent term is O(α5) and contributes to the boundary condition Eq (3.3). The

gravitino field equation can be used to show that the remaining terms are only O(α6), and

they play no role at leading order.

Finally, it is possible to reduce the 11-dimensional action to 10-dimensions to obtain the

low energy limit of the weakly coupled heterotic superstring. The result of dimensional re-

duction agrees with the higher-order action obtained from supergravity 10-dimensions [18].

The curvature-squared terms obtained from string amplitude calculations also agree, up to

allowed metric redefinitions [19].

3.2 Boundary conditions and G-fluxes

At fifth order in derivatives new G-flux terms begin to contribute to the boundary con-

ditions. Due to the connection between the boundary conditions and the Green-Schwarz

anomaly cancellation mechanism, these terms allow us to deduce some of the G-flux terms

in the anomalies. The part of the supersymmetry transformation which is exactly fifth

order in derivatives will be denoted by δ5. For the rest of this section we shall drop the

Yang-Mills terms.

The fermion boundary condition can be written in the form,

P+ψA = − 1

24
ǫ
(

ΓA
BC − 10δA

BΓC
)

R−
BCDEψ

DE + ǫfA
BCψBC , (3.11)

where fA
BC contains G-flux terms and gamma-matrices. When we drop the three-fermi

terms, variation of the fermion boundary condition can be done using eq. (2.19) and gamma

matrix identities. The fifth order supersymmetry variation δ5P+ψA vanishes for

fA
BC = δA

[BY ′C] +
1

6
ΓAY

′BC , (3.12)

where Y A was defined in eq. (2.14) and prime denotes a normal derivative.

The antisymmetric tensor is a little more complex. The proposed boundary condition

is that

CABC =

√
2

24
ǫ
(

ωLABC + ωψABC + ωGABC

)

, (3.13)

1Variation of the original supergravity action makes a contribution to T
L

AB . This was given incorrectly

in section 2 of [6]. I am grateful to Paul Saffin for pointing out this mistake.
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where

ωLABC = ωLABC(ω̂−) (3.14)

ωψABC =
1

4
ψDEΓABCψ

DE − 6ψN [AψBC] − 12ψ[ABXψC] (3.15)

ωGABC = −1

3
∗ Ĝ′

ABC
DEF ĜNDEF + 3ĜN [A

DEĜ′
BC]DE . (3.16)

The dual tensor

∗G′
ABCDEF =

1

24
εABCDEF

PQRSG′
PQRS , (3.17)

where G′
ABCD = DNGABCD = −4D[AGBCD]N .

Variation of the antisymmetric tensor field on the boundary using the bulk supersym-

metry transformations gives,

δCABC = −
√

2

8
ηΓ[ABψC]. (3.18)

Since η = P−η, we can replace ψA by P+ψA and use the gravitino boundary conditon (3.11)

to get the fifth order transformation,

δ5CABC = −
√

2

8
ηΓ[ABfC]

DEψDE . (3.19)

Variation of the terms on the right hand side of the boundary condition using eqs. (2.18-

2.22) gives

δ5ω
L
ABC = −6ηR[BCψNA] − 12η{R[AB ,X}ψC], (3.20)

δ5ω
ψ
ABC = 6ηR[BCψNA] − 12ψ[ABXDC]η (3.21)

+12ηR[ABXψC] +
1

2
ηyDEΓABCψDE − 6ηyNAψBC ,

δ5ω
G
ABC = −1

4

√
2 ∗G′

ABC
DEFηΓFψDE +

9

2

√
2G′

AB
DEηΓ[CψDE]. (3.22)

The best way to deal with the DAη contribution is to remove a total derivative,

δ5ω
L + δ3ω

ψ = −12D[A(ηXψBC]) + 12η(D[AX)ψBC] +
1

2
ηyDEΓABCψDE − 6ηyNAψBC ,

(3.23)

where use has been made of the identity

D[AψBC] = R[ABψC]. (3.24)

We can absorb the total derivative into an abelian transformation of the C field. After

difficult gamma-matrix manipulations,

δ5ω
L + δ3ω

ψ = −3ηΓ[ABfC]
DEψDE +

1

4

√
2 ∗G′

ABC
DEFηΓFψDE − 9

2

√
2G′

AB
DEηΓ[CψDE].

(3.25)

The last two tems cancel with eq. (3.22), leaving a term which matches eq. (3.19). We can

conclude that the boundary condition on C is supersymmetric.
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3.3 Anomaly cancellation

Earlier in this section we used the fact that anomaly cancellation requires the combination

of Chern-Simons forms

ωY − 1

2
ωL. (3.26)

in the boundary condition for the antisymmetric field. This combination orginates in

the 12-form I12 which generates the gauge, gravity and supergravity anomalies. Horava

and Witten obtained an expression for this 12-form by combining gaugino and gravitino

contributions,

I12 =
1

12(2π)5
(I3

4 − 4I4X8), (3.27)

where

I4 = trF 2 − 1

2
trR2 (3.28)

X8 = −1

8
trR4 +

1

32
(trR2)2. (3.29)

The usual notation convention is used now where exterior products are implied rather than

explicit. The combination (3.26) allows the gauge variation of the CGG term in the action

to cancel the anomalies descended from I3
4 .

We have found that supersymmetry demands G-flux terms to appear in addition to

the Chern-Simons terms in the boundary conditions. Anomaly cancellation will only occur

if these terms also appear in I4,

I4 = trF 2 − 1

2
trR−2 + dωG +O(α6), (3.30)

where ωG was given in eq. (3.16). Note that we can only determine the GNABC terms at

this order, even though GABCD terms may also contribute to I4. As a matter of fact, both

G-flux and extrinsic curvature terms can contribute to the anomaly, since these where both

dropped from the original anomaly calculations.

The anomaly 12-form has now been calculated with G-flux terms by Lukic and

Moore [20]. Unfortunately, a direct comparison is complicated for a number of reasons.

Firstly, Lukic and Moore include a ‘Gχχ’ term in their boundary action as suggested by

Horava and Witten [2], but which is not allowed in the improved theory. Secondly, the

fields in the direct anomaly calculation satisfy the background field equations. The bound-

ary conditions only give the I3
4 part of the anomaly and we need the full expression to

compare when subject to field equations.

For the remainder of this section we turn from the G-flux terms to higher order cur-

vature terms. The I4X8 term in I12 can be cancelled by a Green-Schwarz term CX8 in

the 11-dimensional action [8]. To make sense of this term, X8 has to be defined in the

11-dimensional bulk so that it reduces to (3.29) on the boundary. There is no need to

modify the boundary condition on the C field on account of the CX8 term, the boundary

condition being determined only by I4 as long as the anomaly takes the general form (3.27)

so that the Green Schwarz mechanism can be applied.
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We have seen already how anomaly cancellation leads to a unique combination of

curvature-squared terms in the boundary action. This occurs also at higher orders in cur-

vature. The boundary condition on the C field is determined by I4. The other boundary

conditions are then fixed by supersymmetry. In turn the boundary action, which is deter-

mined by the boundary conditions, must also be fixed by I4. Terms which are higher order

than the square of the curvature can arise in this way from extrinsic curvature contribu-

tions to the anomaly. These can be replaced by higher order intrinsic curvature terms by

using the boundary condition on the extrinsic curvature.

As an example, we could consider the ‘ǫ2R4’ interaction terms in the supergravity

action which are related to the ‘CX8’ term by supersymmetry [8]. These will bring in

boundary terms of the form ‘ǫ2KR3’, equivalent to ‘ǫK2R’ after we apply the boundary

condition on the extrinsic curvature K. Anomaly cancellation will now require another

modification to I4, introducing ‘K2R’ terms. In principle, we could reconstruct the extrinsic

curvature terms in the anomaly term this way. Comparing these against a direct calculation

of the anomaly would be a highly non-trivial consistency check.

Another reason this approach may be of interest is that the arguments made so far

for the low energy effective action can be applied equally well to the quantum field theory

effective action for supergravity on a manifold with boundary. By including a boundary

we introduce anomalies. If these can be cancelled by a Green-Schwarz type of mechanism,

then local terms in the boundary action are severely constrained. In particular, any su-

persymmetric counterterms to the theory which required boundary contributions to the

action would not be allowed.

4. Conclusion

11-dimensional supergravity on a manifold with boundary shows an amazing robustness. At

each successive order in derivatives, the anomaly-free extension of the theory is very tightly

constrained, but so far this has not forced any internal contradictions. This is consistent

with the idea that the construction produces the low-energy limit of a well-defined theory

of some kind.

The results for the higher order terms obtained in this paper can be summarised as

follows. First of all, the curvature-squared terms in the boundary of the supergravity action

up to fifth order in derivatives are

SRR =
ǫ

2κ2
11

∫

∂M
dv

(

1

4
R−

ABCDR
−ABCD (4.1)

+
1

2
ψ̄BCΓADA(ω)ψBC +

1

4
ψ̄AΓBCΓARBCDEψ

DE

)

,

where ψAB is the gravitino curvature eq. (2.11) and the minus superscript indicates use of

the modified Lorentz connection withG-flux terms eq. (2.17). The theory now has vanishing

gravity and supergravity anomalies, as well as the vanishing gauge anomaly which existed

previously. The supersymmetric boundary conditions up to fifth order in derivatives and
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two fermi fields are,

CABC =

√
2

24
ǫ
(

ωLABC + ωψABC + ωGABC

)

(4.2)

P+ψA = − 1

24
ǫ
(

ΓA
BC − 10δA

BΓC
)

R−
BCDEψ

DE + ǫfA
BCψBC (4.3)

K̂AB = −1

2
ǫ

(

R−
ACDER

−
B
CDE − 1

12
gABR

−
CDEFR

−CDEF

)

+ ψ-terms. (4.4)

where the ψ-terms in eq. (4.4) can be obtained by variation of the full action whilst keeping

the surface connection fixed, and

ωLABC = ωLABC(ω̂−) (4.5)

ωψABC =
1

4
ψDEΓABCψ

DE − 6ψN [AψBC] −
√

2

6
GNPQRψ[ABΓPQRψC] (4.6)

ωGABC = −1

3
∗ Ĝ′

ABC
DEF ĜNDEF + 3ĜN [A

DEĜ′
BC]DE (4.7)

fA
BC =

√
2

24
ΓPQRδA

[BG′C]
PQR +

√
2

48
ΓAΓPQG′

PQ
BC . (4.8)

Hats denote the supercovariant quantity constructed by adding fermion terms and prime

denotes a derivative in the normal direction.

The flux terms imply new contributions to the gravitino anomaly of supergravity on

a manifold with boundary. Some progress has been made in calculating these terms di-

rectly [20], but so far more work is needed for a full comparison to be made. A direct calcu-

lation of the gravitational anomaly including flux terms and extrinsic curvatures would give

an important check that the Green-Schwarz mechanism can be used at higher derivative

orders to obtain an anomaly-free theory.

Introducing the boundary means that total divergences which are usually discarded

when discussing supersymmetry have to be retained. These total divergences are partic-

ularly dangerous when they start to interfere with the anomaly cancellation mechanism,

as described in section IIIC. This restricts the addition of new bulk interaction terms to

the supergravity action [21]. There may also be important implications for the allowed

counterterms in quantised 11-dimensional supergravity [22], and it would be interesting to

examine both interaction and counterterms on a manifold with boundary.
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